MOONLIT: momentum-contrast and large-kernel for multi-fine-grained deraining

Abstract

Deep learning-based methods have achieved excellent performance in image-deraining tasks. Unfortunately, most existing deraining methods incorrectly assume a uniform rain streak distribution and a fixed fine-grained level. And this uncertainty of rain streaks will result in the model not being competent at repairing all fine-grained rain streaks. In addition, some existing convolution-based methods extend the receptive field mainly by stacking convolution kernels, which frequently results in inaccurate feature extraction. In this work, we propose momentum-contrast and large-kernel for multi-fine-grained deraining network (MOONLIT). To address the problem that the model is not competent at all fine-grained levels, we use the unsupervised dictionary contrastive learning method to treat different fine-grained rainy images as different degradation tasks. Then, to address the problem of inaccurate feature extraction, we carefully constructed a restoration network based on large-kernel convolution with a larger and more accurate receptive field. In addition, we designed a data enhancement method to weaken features other than rain streaks in order to be better classified for different degradation tasks. Extensive experiments on synthetic and real-world deraining datasets show that the proposed method MOONLIT achieves the state-of-the-art performance on some datasets. Code is available at https://github.com/awhitewhale/moonlit.

Publication
In The Journal of Supercomputing (TJSC)
Chuanbo Zhu
Chuanbo Zhu
PhD Candidate of Computer Science and Technology

My research interests include multimodal intelligence, sentiment analysis, emotion recognition and sarcasm detection